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Abstract

Early diagnosis is crucial to slowing the progression of Alzheimer’s disease

(AD), so it is urgent to find an effective diagnostic method for AD. This study

intended to investigate whether the transfer learning approach of deep

Q-network (DQN) could effectively distinguish AD patients using local metrics

of resting-state functional magnetic resonance imaging (rs-fMRI) as features.

This study included 1310 subjects from the Consortium for Reliability and

Reproducibility (CoRR) and 50 subjects from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) GO/2. The amplitude of low-frequency fluctuation

(ALFF), fractional ALFF (fALFF) and percent amplitude of fluctuation

(PerAF) were extracted as features using the Power 264 atlas. Based on gender

bias in AD, we searched for transferable similar parts between the CoRR fea-

ture matrix and the ADNI feature matrix, resulting in the CoRR similar feature

matrix served as the source domain and the ADNI similar feature matrix

served as the target domain. A DQN classifier was pre-trained in the source

domain and transferred to the target domain. Finally, the transferred DQN

classifier was used to classify AD and healthy controls (HC). A permutation

test was performed. The DQN transfer learning achieved a classification accu-

racy of 86.66% (p < 0.01), recall of 83.33% and precision of 83.33%. The find-

ings suggested that the transfer learning approach using DQN could be an
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effective way to distinguish AD from HC. It also revealed the potential value

of local brain activity in AD clinical diagnosis.

KEYWORD S
Alzheimer’s disease, deep Q-network, local metrics, reinforcement learning, resting-state
fMRI, transfer learning

1 | INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder characterized by impaired memory, diffi-
culty learning and thinking, and uncontrolled behaviour,
placing a heavy burden on families and caregivers (Bondi
et al., 2017). However, the etiological factors of AD are
complex, and the diagnosis is challenging (Breijyeh &
Karaman, 2020). In clinical practice, there is an urgent
need to discover effective methods for diagnosing AD.

Existing research has confirmed brain dysfunction in
AD patients by using resting state functional magnetic
resonance imaging (rs-fMRI) (Bi et al., 2019, 2020; Li
et al., 2017). Based on the objective neuromarkers
detected by rs-fMRI, studies attempted to combine rs-
fMRI with machine learning algorithms to achieve accu-
rate diagnosis of AD. For example, scholars applied sup-
port vector machine (SVM) to classify AD patients based
on brain functional connectivity features, of which the
total accuracy rate reached 81.22% (Zhao et al., 2019).
Convolutional neural networks (CNN) and long short-
term memory networks (LSTM) were also used for AD
classification, achieving an accuracy rate of 91.43% (Noh
et al., 2023). Another study used local graph neural net-
works (GNN) to obtain local biomarkers and then used
global GNN to learn the relationship between subjects
and local biomarkers, achieving an accuracy of 82.09%
for AD classification (Zhang et al., 2022). However, most
fMRI studies face the limitation of small sample sizes,
which brings issues of overfitting and weak generaliza-
tion in machine learning studies (Bi et al., 2018; Li
et al., 2022; Yosinski et al., 2014).

Transfer learning is a machine learning method that
concentrates on knowledge transfer between domains.
The classifier of transfer learning is pre-trained on a
large-scale dataset in the source domain and then fine-
tuned on a small-scale dataset in the target domain,
resulting in higher accuracy and addressing overfitting
and weak generalization issues in small-scale data
(Yosinski et al., 2014). Transfer learning has been suc-
cessfully applied in distinguishing obsessive–compulsive
disorder (Kalmady et al., 2021), attention-deficit/
hyperactivity disorder (Meng et al., 2022) and autism
(Gao et al., 2021). For example, researchers utilized brain

connectivity of AD patients as features and employed
graph CNN for transfer learning to identify AD. This
approach achieved a classification accuracy of 89.4% (Li
et al., 2021). In a study on diagnosing patients with mild
cognitive impairment (MCI), which is associated with an
increased risk of developing AD, transfer learning has
achieved an accuracy rate of 82.4% (Li et al., 2019). From
the brain connectivity or network perspective, the effec-
tiveness of transfer learning in AD classification has been
revealed. However, whether the local brain activity of AD
patients can serve as a feature for transfer learning
remains to be explored.

To characterize local spontaneous neural brain activ-
ity, several rs-fMRI methods have been proposed. The
amplitude of low-frequency fluctuation (ALFF) is a reli-
able indicator for detecting the intensity of spontaneous
activity in the brain (Yu-Feng et al., 2007). Based on
ALFF, the fractional ALFF (fALFF) is obtained by the
ratio of low-frequency power spectrum to the power
across the entire frequency range, which provides a more
sensitive and specific measure for detecting spontaneous
brain activity (Zou et al., 2008). And the percent ampli-
tude of fluctuation (PerAF) is a scale-independent
method that is not influenced by the scale of the original
signal, which shows higher reliability (Jia et al., 2020).
The combination of the three metrics could comprehen-
sively explore the brain activity characteristics of AD at
single voxel level.

Overall, there are few studies using rs-fMRI for AD
transfer learning, and few scholars who directly utilize
local metrics for transfer learning. Therefore, this study
proposed a transfer learning method based on the trans-
fer deep Q-network (DQN), which utilized local abnor-
malities of AD patients as features and employed a DQN
for model parameter transfer learning.

2 | MATERIALS AND METHODS

2.1 | Participants

The source domain samples for this study came from Con-
sortium for Reliability and Reproducibility (CoRR). There
are 33 datasets in total, of which 32 datasets are available
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for download. Prior to the data collection, all researchers
confirmed that it was collected with the approval of local
ethics committee or institutional review board and that
the data were shared through CoRR. The 32 downloadable
datasets consist of 19 data sites, which were divided into
36 groups based on time points and slice quantities. Sub-
jects were divided into two groups according to gender,
with 653 male and 657 female subjects. Inclusion criteria
included (1) subjects with corresponding T1 images;
(2) images with good normalization effect; (3) subjects
without excessive head movements (translations or rota-
tions should be less than 3 mm or 3�); and (4) exclusion of
non-right-handed subjects. Diagnostic information, ethical
statements, and scanning information for all scanners are
available at https://fcon_1000.projects.nitrc.org/indi/
CoRR/html/samples.html. The target domain samples for
this experiment were obtained from ADNI GO/2 and
included all baseline AD and healthy control (HC) rs-
fMRI data. Subjects were divided into two groups, AD and
HC. Twenty-five subjects were included in the AD data, of
which six AD subjects were from Apoe3 and 19 AD sub-
jects were from Apoe4. Twenty-five subjects were included
in the HC data, of which 17 HC subjects were from Apoe3
and eight HC subjects were from Apoe4. Criteria for inclu-
sion included (1) subjects with corresponding T1 images;
(2) images with good normalization effect; (2) subjects
without large head movements (translations or rotation
less than 3 mm or 3�); (3) exclusion of non-right-handed
subjects; and (4) by matching the age and gender with the
AD group, 25 HC subjects were selected as the control
group. Diagnostic information about the scanner and
information about the scan can be found at https://adni.
loni.usc.edu/. The status of the included CORR and ADNI
data was shown in Table 1.

2.2 | Resting-state fMRI data
preprocessing

The same preprocessing steps are applied for CoRR
and ADNI data. The software packages used for data

preprocessing were RESTplus V1.25 (Jia et al., 2019)
and the Statistical Parameter Mapping tool (SPM12)
based on MATLAB 2017b platform. The specific pre-
processing steps were (1) removal of the first 10 time
points; (2) slice-timing correction; (3) head-motion cor-
rection; (4) spatial normalization and resampling into
voxels of 3 � 3 � 3 size; (5) spatial smoothing with a
half-height full-width (FWHM) of [6 6 6]; (6) removal
of the linear drift in the time course; (7) nuisance
covariate regression based on the Frison-24 parameters
(Friston et al., 1996); and (8) for PerAF calculation,
bandpass filtering was performed with a frequency
range of 0.01–0.08 Hz.

2.3 | Indicator calculation and feature
extraction

Rs-fMRI data of CoRR and ADNI datasets were pro-
cessed in the same way. ALFF, fALFF and PerAF met-
rics were calculated using RESTplus V1.25. The
calculation process of ALFF was as follows: The fast
Fourier transform (FFT), first of all, was applied to the
pre-processed data, which transformed the rs-fMRI sig-
nal from time domain to frequency domain, thus
obtaining the power spectrum. In the range of 0.01–
0.08 Hz, the square root at each frequency was
obtained, and the square root was averaged to obtain
ALFF. The ALFF calculation process includes bandpass
filter (0.01–0.08 Hz). Thus, for ALFF calculation, filter
was not conducted during preprocessing (Yu-Feng
et al., 2007). The calculation process of fALFF was as
follows: First, the time series of each voxel was trans-
formed into the frequency domain. Then, the square
root was calculated for each frequency in the power
spectrum. To obtain fALFF, the sum of amplitudes in
the frequency range of 0.01–0.08 Hz was divided by
the sum of amplitudes across the entire frequency
range. For fALFF calculation, the sum of amplitudes
in the entire frequency band (0.01–0.25 Hz) was
needed. Thus, filter was not conducted for the fALFF

TAB L E 1 Demographics and clinical characteristics of all subjects.

CoRR ADNI

Measure HC (n = 1310) Mean (SD) p-value HC (n = 25) Mean (SD) AD (n = 25) Mean (SD) p-value

Age (years) 25.47 (14.89) 0.42a 73.75 (4.9) 72.28 (6.98) 0.40a

Sex(M/F) 653/657 — 11/14 13/12 0.57b

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CoRR, Consortium for Reliability and Reproducibility; F, female;
HC, Healthy Controls; M, male.
aThe p-value was obtained by Student’s t-test.
bThe p-value was obtained by two-tailed Pearson chi-square t-test.
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calculation (Zou et al., 2008). PerAF was calculated by
the following formula (Jia et al., 2020):

PerAF¼ 1
n

Xn

i¼1

xi�μ

μ

����

�����100%

where n is the number of time points in a single voxel
time series, xi is the signal intensity at the ith time point
on the single voxel time series and μ is the signal mean of
the single voxel time series.

For standardization, the ALFF of each voxel was nor-
malized by dividing it by the average ALFF of the entire
brain. Similarly, fALFF and PerAF were also standard-
ized using the same approach. Then, mALFF, mfALFF
and mPerAF were obtained, respectively.

The Power 264 atlas was used to segment the brain
region into 264 regions of interest (ROIs) which were
used to extract metrics for mALFF, mfALFF and
mPerAF, respectively. Seven hundred and ninety-two
features were extracted from the CoRR data, of which
264 features were extracted from mALFF, 264 features
were extracted from mfALFF and 264 features were
extracted from mPerAF. The ADNI data also obtained
792 features with same compositions as these in the
CoRR dataset. Two feature matrices were obtained:
CoRR feature matrix and ADNI feature matrix, of
which the sizes were the number of subjects � 792 in
each dataset.

2.4 | Transfer learning

First, this study conducted preliminary screening of sub-
jects, selecting similar subjects from CoRR to find poten-
tial transferable components. According to the gender
bias of AD, the prevalence of AD is higher in females
than in males (Subramaniapillai et al., 2021). This study
calculated the mean signal of AD and HC separately,
with the dimension of the mean signal being 1 � 792.
The cosine distance between the mean signal of AD and
female subjects as well as that between the mean signal
of HC and male subjects in CoRR were measured. Cosine
distance only considers the similarity in direction of
values and is not affected by the magnitude of values, so
it is suitable for preliminary screening of subjects
(Kirişci, 2023). We selected a fixed number of female sub-
jects with the closest cosine distance to AD and a fixed
number of male subjects with the closest cosine distance
to HC. On this basis, a new CoRR feature matrix was
constructed.

Next, the screening of similar features was conducted
to further identify transferable parts and prepare for
transfer learning. The Earth mover’s distance (EMD) and

Sinkhorn combination algorithm were used to measure
the distance between two features with same location in
the new CoRR feature matrix and ADNI feature matrix
by using coupling matrices (Gautheron et al., 2019).
Then, a ranking of feature similarity was obtained, and a
fixed number of most similar features were selected by
employing the EMD and Sinkhorn combination algo-
rithms. Based on the new CoRR feature matrix, ADNI
similar feature matrix and CoRR similar feature matrix
were constructed.

Finally, in this study, transfer learning was con-
ducted using the DQN as the base model. The large-
sample CoRR similar feature matrix was used as the
source domain, and the small-sample ADNI similar fea-
ture matrix was used as the target domain. First, the
DQN classifier was pre-trained using the source domain
data. The parameters used during the learning process
of the pre-trained model can be found in the supple-
mentary material (Table S2 in the Supporting Informa-
tion). The pre-trained local and target network
parameters in the source domain DQN models were
transferred to the local and target network of the target
domain DQN model as the initial parameters. The tar-
get domain dataset was divided into a training set and
a test set in a ratio of 7:3. Transfer learning with DQN
was performed using the target domain training set.
Due to the limited number of subjects, leave-one-out
cross-validation was used for parameter tuning. When
there were 300 similar male subjects and 300 similar
female subjects in the source domain, as well as
170 similar features, the target domain DQN model
achieved good results, as shown in the results table in
the Supporting Information (Table S1). After parameter
tuning on the training set, the best set of parameters
was found, which was considered the optimal model.
The specific model parameters can be found in the tar-
get domain DQN model parameter table in the supple-
mentary materials (Table S3 in the Supporting
Information). To test the effectiveness of the optimal
model, the target domain test set was used for evalua-
tion. Permutation test was used in this study to evalu-
ate the statistical significance of prediction accuracy
(Golland & Fischl, 2003). The labels in the training and
test sets were randomly shuffled, and the shuffled train-
ing and test sets were trained and predicted using the
optimal parameter model obtained before. This process
was repeated 5000 times in total. The accuracy obtained
from the 5000 experimental runs was compared with
the original accuracy. The number of times that the
accuracy was greater than or equal to the original test
set accuracy was counted and divided by the total num-
ber of permutations. If the p-value is less than 0.05, the
original accuracy is considered significant (Zhao
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et al., 2022). The specific process of the transfer learn-
ing algorithm is shown in Figure 1.

2.5 | Classification with other
algorithms

We applied DQN, SVM, logistic regression (LR) and
Gaussian naive Bayes (GNB) for the classification of
AD in the ADNI dataset. Due to high dimensionality
of the small sample features, Lasso was used for

feature selection. In the comparative algorithms, the
optimal parameters and classifier models were
obtained based on the leave-one-out cross-validation
results of the target domain training set. The optimal
classifier model was evaluated using the target domain
test set. In the SVM algorithm, a linear kernel func-
tion was used with a C parameter set to 0.1, and
31 features were selected. In the LR algorithm, L2 reg-
ularization was used with a regularization strength
parameter C set to 0.4, and 57 features were selected.
The GNB classifier selected 13 features. The model

F I GURE 1 Process of transfer learning. AD, Alzheimer’s disease; ADNI, Alzheimer’s disease neuroimaging initiative; CoRR,

consortium for reliability and reproducibility; DQN, deep Q-network; HC, healthy controls; similar ADNI, ADNI similar feature matrix;

similar CoRR, CoRR similar feature matrix.
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parameters for the DQN classifier can be found in
Table S4.

3 | RESULTS

3.1 | Demographic information

In the CoRR dataset, 45 subjects were excluded due to
missing structural magnetic resonance imaging; 59 sub-
jects were excluded due to poor normalization quality;
61 subjects were excluded due to excessive head motion
(translation or rotation greater than 3 mm or 3�), and
14 subjects were excluded because they were not right-
handed. Finally, a total of 1310 subjects were included in
this study, including 653 males and 657 females. In the
ADNI dataset, nine subjects were excluded due to origi-
nal data missing, two subjects were excluded due to
excessive head motion (translation or rotation greater
than 3 mm or 3�), two subjects were excluded due to
non-right-handedness, and 11 HC were excluded due
to advanced age and gender mismatch. Finally, 50 sub-
jects were included in the study, including 25 AD
patients and 25 HC (Table 1).

3.2 | Classification results of different
algorithms

Table 2 presents a comparison between the transferred
DQN classifier and other classifiers. We selected 300 � 2
similar subjects from CoRR and extracted the top 170 sim-
ilar features to construct the CoRR similar feature matrix
(600 � 170) and the ADNI similar feature matrix. After
transfer learning, the classification accuracy reached
86.66%. The recall rate was 83.33%. The precision was
83.33%. And the area under the receiver operating char-
acteristic (ROC) curve was 0.87. Table 2 demonstrates
that when the number of similar features was 170, trans-
fer learning with DQN performed better than other
methods. The table provides a comparison of the results

for classifying ADNI subjects directly using the DQN
classifier, showing significantly improved results after
transfer. The ROC curve in Figure 2 shows that the classi-
fier in this study outperformed other methods at the
point where the number of similar features was 170.
Figure 3 depicts the results of performing 5000
permutation tests, which further investigated whether
the prediction results were merely accidental. The calcu-
lated p-value was less than 0.01, indicating that the accu-
racy obtained from the real data was significantly higher
than that generated randomly.

4 | DISCUSSION

Studies on medical imaging usually have small sample
sizes. However, in machine learning, a small number of

TAB L E 2 Comparison of results of different algorithms.

Method Similar subjects Similar features Accuracy (%) Recall (%) Precision (%) AUC

TL-DQN 300 � 2 170 86.66 83.33 83.33 0.87

DQN — — 60 66.66 50 0.62

SVM — — 73.33 66.66 66.66 0.83

LR — — 80 83.33 71.42 0.85

GNB — — 73.33 66.66 66.66 0.81

Abbreviations: AUC, area under the receiver operating characteristic curve; DQN, deep Q-network; GNB, Gaussian naïve Bayes; LR, logistic regression; SVM,
support vector machine; TL-DQN, transfer learning with deep Q-network.

F I GURE 2 Receiver operating characterization (ROC) curve

for metrics from multiple classifiers. The image of ROC was

displayed using the Matplotlib toolkit in python. AUC, area under

the ROC curve; FPR, false positivity rate; TPR, true positivity rate.
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subjects can cause problems such as overfitting, leading
to biased machine learning (Vabalas et al., 2019). There-
fore, this study provided a reference framework that used
a medical image database with low similarity and trans-
fer learning to alleviate issues such as overfitting and
weak generalization ability. Based on the local brain
activities, the results showed that using transfer learning
with a DQN can successfully classify AD and HC with
the final classification accuracy of 86.66%, the recall rate
of 83.33%, the precision of 83.33% and the AUC of 0.87.

Firstly, many AD classification methods are limited to
the feature information of small samples. For example,
some scholars fused brain region information and genetic
information as features and use the method of clustering
random forest for AD classification (Bi et al., 2020). Some
researchers integrated cortical features to classify AD
(de Vos et al., 2016). Some researchers combined texture
features of brain imaging with clinical features to classify
AD (Altaf et al., 2018). The fusion of features can, to
some extent, alleviate the overfitting problem in small-
sample machine learning. However, the feature informa-
tion is also limited by the small sample size itself. Our
study utilized a large-sample CoRR dataset, which
allowed us to expand the scope beyond the limitations of
small-sample feature information.

Secondly, we applied a novel transfer learning
method based on DQN, which not only identified trans-
ferable parts in CoRR and ADNI datasets but also utilized
adaptive deep reinforcement learning algorithms. Com-
pared with traditional methods such as SVM, the most
used classifier for small-sample medical imaging data
classification (LaConte et al., 2005; Steardo et al., 2020;
Wang et al., 2007), deep reinforcement learning algo-
rithms have stronger robustness and generalization

ability. They can effectively address the challenges posed
by small-sample problems when combined with transfer
learning. Compared to other deep models such as CNN
(Qureshi et al., 2019) and deep neural networks (DNN)
(Yang et al., 2020), the DQN model relies on rewards to
drive its learning process, and the learning is influenced
by the reward scores (Mnih et al., 2015). This approach
helps to mitigate issues arising from differences in label
information between the source and target domains. In
the CoRR and ADNI databases used in this study, the
labels are inconsistent and have low similarity. The trans-
fer learning method based on DQN can overcome these
issues and achieve higher accuracy.

The local indicators of resting-state brain imaging
have always been the focus of researchers. In previous
studies, researchers have used local metrics to conduct
extensive research on resting-state brain imaging (Chen
et al., 2022; Wu et al., 2021). In this study, we used a
combination of local indicators including ALFF, fALFF
and PerAF for the first time to study AD. The experimen-
tal results showed that the combination of the three local
metrics can serve as effective biomarkers in
identifying AD.

Local indicators can accurately locate specific brain
regions and identify distinctive characteristics of those
regions. In non-machine learning studies of AD, some
researchers found abnormalities in the ALFF indicator in
certain brain regions of AD patients (Lai et al., 2022),
while others discovered abnormalities in the fALFF indi-
cator in certain brain regions (Li et al., 2017). It can be
seen that previous research demonstrated that local indi-
cators in AD patients are abnormal in certain brain
regions and can be localized to specific areas. However,
in current machine learning research, only a few studies
used local indicators to investigate the classification of
AD patients. Some scholars used ALFF as a feature and
input it into an LR classifier for classification (de Vos
et al., 2018). Some scholars used both ALFF and ReHo as
features and input them into an SVM classifier for classi-
fication (Long et al., 2016). This study expanded the exist-
ing research by combining ALFF, fALFF and PerAF
indicators. The research results confirmed that the three
local indicators can serve as effective biomarkers to dif-
ferentiate between AD and HC.

The combination of transferring DQN and local indi-
cators can effectively differentiate between AD and HC,
bringing important exploratory significance to the clinical
diagnosis of AD. Currently, the use of machine learning
for automated diagnosis of AD is still in its early stage.
This study achieved good classification results and pro-
vided a preliminary exploration for automated diagnosis
of AD, which has positive implications for addressing the
growing need for clinical diagnostic of AD.

F I GURE 3 The results of performing 5000 permutation tests.
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5 | CONCLUSION

Our research preliminarily demonstrated that transfer
learning could successfully distinguish AD patients from
HC using local brain activity as features. This provides
important evidence for understanding the neuropathol-
ogy of AD and strongly supports the hypothesis that local
metrics have potential value in clinical diagnosis.
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Kirişci, M. (2023). New cosine similarity and distance measures for
Fermatean fuzzy sets and TOPSIS approach. Knowledge and
Information Systems, 65(2), 855–868. https://doi.org/10.1007/
s10115-022-01776-4

LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X.
(2005). Support vector machines for temporal classification of
block design fMRI data. NeuroImage, 26(2), 317–329. https://
doi.org/10.1016/j.neuroimage.2005.01.048

Lai, Z., Zhang, Q., Liang, L., Wei, Y., Duan, G., Mai, W.,
Zhao, L., Liu, P., & Deng, D. (2022). Efficacy and mecha-
nism of moxibustion treatment on mild cognitive impair-
ment patients: An fMRI study using ALFF. Frontiers in
Molecular Neuroscience, 15, 852882. https://doi.org/10.3389/
fnmol.2022.852882

Li, L., Jiang, H., Wen, G., Cao, P., Xu, M., Liu, X., Yang, J., &
Zaiane, O. (2021). TE-HI-GCN: An ensemble of transfer hier-
archical graph convolutional networks for disorder diagnosis.
Neuroinformatics, 20, 353–375. https://doi.org/10.1007/s12021-
021-09548-1

Li, W., Zhang, L., Qiao, L., & Shen, D. (2019). Toward a better esti-
mation of functional brain network for mild cognitive impair-
ment identification: A transfer learning view. IEEE Journal of
Biomedical and Health Informatics, 24(4), 1160–1168. https://
doi.org/10.1109/JBHI.2019.2934230

Li, W.-K., Chen, Y.-C., Xu, X.-W., Wang, X., & Gao, X. (2022).
Human-guided functional connectivity network estimation for
chronic tinnitus identification: A modularity view. IEEE Jour-
nal of Biomedical and Health Informatics, 26, 4849–4858.
https://doi.org/10.1109/jbhi.2022.3190277

Li, Y., Jing, B., Liu, H., Li, Y., Gao, X., Li, Y., Mu, B., Yu, H.,
Cheng, J., Barker, P. B., Wang, H., & Han, Y. (2017). Fre-
quency-dependent changes in the amplitude of low-frequency
fluctuations in mild cognitive impairment with mild depres-
sion. Journal of Alzheimer’s Disease, 58(4), 1175–1187. https://
doi.org/10.3233/JAD-161282

Long, Z., Jing, B., Yan, H., Dong, J., Liu, H., Mo, X., Han, Y., &
Li, H. (2016). A support vector machine-based method to iden-
tify mild cognitive impairment with multi-level characteristics
of magnetic resonance imaging. Neuroscience, 331, 169–176.
https://doi.org/10.1016/j.neuroscience.2016.06.025

Meng, X., Zhuo, W., Ge, P., Zou, B., Zhu, Y., Liu, W., & Li, X.
(2022). Diagnostic model optimization method for ADHD
based on brain network analysis of resting-state fMRI images
and transfer learning neural network. Frontiers in Human
Neuroscience, 16, 1005425. https://doi.org/10.3389/fnhum.
2022.1005425

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., & Hassabis, D. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540), 529–533.
https://doi.org/10.1038/nature14236

Qureshi, M. N. I., Oh, J., & Lee, B. (2019). 3D-CNN based discrimi-
nation of schizophrenia using resting-state fMRI. Artificial
Intelligence in Medicine, 98, 10–17. https://doi.org/10.1016/j.
artmed.2019.06.003

Steardo, L. Jr., Carbone, E. A., de Filippis, R., Pisanu, C., Segura-
Garcia, C., Squassina, A., de Fazio, P., & Steardo, L. (2020).
Application of support vector machine on fMRI data as bio-
markers in schizophrenia diagnosis: A systematic review.
Frontiers in Psychiatry, 11, 588. https://doi.org/10.3389/fpsyt.
2020.00588

Subramaniapillai, S., Almey, A., Rajah, M. N., & Einstein, G.
(2021). Sex and gender differences in cognitive and brain
reserve: Implications for Alzheimer’s disease in women. Fron-
tiers in Neuroendocrinology, 60, 100879. https://doi.org/10.
1016/j.yfrne.2020.100879

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019).
Machine learning algorithm validation with a limited sample
size. PLoS ONE, 14(11), e0224365. https://doi.org/10.1371/
journal.pone.0224365

Wang, Z., Childress, A. R., Wang, J., & Detre, J. A. (2007). Support
vector machine learning-based fMRI data group analysis. Neu-
roImage, 36(4), 1139–1151. https://doi.org/10.1016/j.
neuroimage.2007.03.072

Wu, D., Zhao, H., Gu, H., Han, B., Wang, Q., Man, X.,
Zhao, R., Liu, X., & Sun, J. (2021). The effects of rs405509
on APOEε4 non-carriers in non-demented aging. Frontiers
in Neuroscience, 15, 677823. https://doi.org/10.3389/fnins.
2021.677823

Yang, Z., Zhuang, X., Sreenivasan, K., Mishra, V., Curran, T., &
Cordes, D. (2020). A robust deep neural network for denoising
task-based fMRI data: An application to working memory and
episodic memory. Medical Image Analysis, 60, 101622. https://
doi.org/10.1016/j.media.2019.101622

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How trans-
ferable are features in deep neural networks? Advances in Neu-
ral Information Processing Systems, 27.

Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S.,
Meng, L., Li-Xia, T., Tian-Zi, J., & Yu-Feng, W. (2007).
Altered baseline brain activity in children with ADHD
revealed by resting-state functional MRI. Brain and Develop-
ment, 29(2), 83–91. https://doi.org/10.1016/j.braindev.2006.
07.002

Zhang, H., Song, R., Wang, L., Zhang, L., Wang, D., Wang, C., &
Zhang, W. (2022). Classification of brain disorders in rs-fMRI
via local-to-global graph neural networks. IEEE Transactions
on Medical Imaging, 42, 444–455. https://doi.org/10.1109/tmi.
2022.3219260

Zhao, J., Ding, X., Du, Y., Wang, X., & Men, G. (2019). Functional
connectivity between white matter and gray matter based on
fMRI for Alzheimer’s disease classification. Brain and Behav-
ior: A Cognitive Neuroscience Perspective, 9(10), e01407. https://
doi.org/10.1002/brb3.1407

MA ET AL. 9

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16261 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [04/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.scib.2019.05.008
https://doi.org/10.3390/s23146330
https://doi.org/10.1016/j.bpsc.2021.12.003
https://doi.org/10.1016/j.bpsc.2021.12.003
https://doi.org/10.1007/s10115-022-01776-4
https://doi.org/10.1007/s10115-022-01776-4
https://doi.org/10.1016/j.neuroimage.2005.01.048
https://doi.org/10.1016/j.neuroimage.2005.01.048
https://doi.org/10.3389/fnmol.2022.852882
https://doi.org/10.3389/fnmol.2022.852882
https://doi.org/10.1007/s12021-021-09548-1
https://doi.org/10.1007/s12021-021-09548-1
https://doi.org/10.1109/JBHI.2019.2934230
https://doi.org/10.1109/JBHI.2019.2934230
https://doi.org/10.1109/jbhi.2022.3190277
https://doi.org/10.3233/JAD-161282
https://doi.org/10.3233/JAD-161282
https://doi.org/10.1016/j.neuroscience.2016.06.025
https://doi.org/10.3389/fnhum.2022.1005425
https://doi.org/10.3389/fnhum.2022.1005425
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.artmed.2019.06.003
https://doi.org/10.1016/j.artmed.2019.06.003
https://doi.org/10.3389/fpsyt.2020.00588
https://doi.org/10.3389/fpsyt.2020.00588
https://doi.org/10.1016/j.yfrne.2020.100879
https://doi.org/10.1016/j.yfrne.2020.100879
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1016/j.neuroimage.2007.03.072
https://doi.org/10.1016/j.neuroimage.2007.03.072
https://doi.org/10.3389/fnins.2021.677823
https://doi.org/10.3389/fnins.2021.677823
https://doi.org/10.1016/j.media.2019.101622
https://doi.org/10.1016/j.media.2019.101622
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1109/tmi.2022.3219260
https://doi.org/10.1109/tmi.2022.3219260
https://doi.org/10.1002/brb3.1407
https://doi.org/10.1002/brb3.1407


Zhao, L., Sun, Y.-K., Xue, S.-W., Luo, H., Lu, X.-D., & Zhang, L.-H.
(2022). Identifying boys with autism spectrum disorder based
on whole-brain resting-state interregional functional connec-
tions using a boruta-based support vector machine approach.
Frontiers in Neuroinformatics, 16, 761942. https://doi.org/10.
3389/fninf.2022.761942

Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J.,
Wang, Y. F., & Zang, Y. F. (2008). An improved approach to
detection of amplitude of low-frequency fluctuation (ALFF)
for resting-state fMRI: Fractional ALFF. Journal of Neurosci-
ence Methods, 172(1), 137–141. https://doi.org/10.1016/j.
jneumeth.2008.04.012

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Ma, H., Wang, Y., Hao,
Z., Yu, Y., Jia, X., Li, M., & Chen, L. (2024).
Classification of Alzheimer’s disease: application of
a transfer learning deep Q-network method.
European Journal of Neuroscience, 1–10. https://
doi.org/10.1111/ejn.16261

10 MA ET AL.

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16261 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [04/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3389/fninf.2022.761942
https://doi.org/10.3389/fninf.2022.761942
https://doi.org/10.1016/j.jneumeth.2008.04.012
https://doi.org/10.1016/j.jneumeth.2008.04.012
https://doi.org/10.1111/ejn.16261
https://doi.org/10.1111/ejn.16261

	Classification of Alzheimer's disease: application of a transfer learning deep Q-network method
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Resting-state fMRI data preprocessing
	2.3  Indicator calculation and feature extraction
	2.4  Transfer learning
	2.5  Classification with other algorithms

	3  RESULTS
	3.1  Demographic information
	3.2  Classification results of different algorithms

	4  DISCUSSION
	5  CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


